IBD Sanity Checks: Part I

Johnny Goett

Rensselaer Polytechnic Institute

May 29, 2009

topics

1 IBD Generation

2 Photon Hit Times

3 Neutron Moderation

Late Photon Hit Times

What interactions should govern neutron transport in scintillator?

- ullet No coulomb interaction o neutrons are penetrating
- ullet IBD neutrons are epithermal o elastic scattering should dominate
- radiative neutron capture should go as $\frac{1}{v}$ at thermal energies
- fission should be negligible for thermalized neutrons for lack of fissile material

Elastic scattering of neutrons on light nuclei are understood ¹ The Energies of neutrons after scattering are uniform in the range:

$$\frac{\mathsf{A} - 1}{\mathsf{A} + 1}^2 \mathsf{E}_0 < \mathsf{E} < \mathsf{E}_0 \tag{1}$$

At low energies scattering is isotropic, some math gives:

$$ln\frac{\mathsf{E}_0}{\mathsf{E}(\theta)} = ln\frac{(\mathsf{A}+1)^2}{\mathsf{A}^2 + 1 + 2\mathsf{A}\cos(\theta)} \tag{2}$$

Averaged over all scattering angles this quantity is known as the "averaged lethargy" ξ For Hydrogen: $\xi=1$, Carbon-12: $\xi=0.158$

¹See E.U. Condon, G. Breit: Phys. Rev. 49, 229 (1936) → ()

So... In any plot that reflects energy deposition, we should expect to see:

- lots of light at early times from positiron annihilation
- 3 peaks at late times from the neutron
 - few keV from moderation
 - ullet 2 MeV from H / C-12 capture
 - 8 MeV from Gd capture

A quick way to see this is in the hit multiplicity (the number of photon hits) in the AD.

Gd: $131\pm 9\frac{photons}{MeV}$ H/C: 149 ± 26 Then one one expect an epithermal neutron to have a few tens of photons in the AD.

I'll make this more quantitative next week with some calculations of neutron transport to compare to the simulation.